

AIRS L1b Radiometric Calibration and Accuracy Update

T. Pagano*, S. Broberg, E. Manning, H. Aumann, M. Weiler, K. Overoye

*Jet Propulsion Laboratory, California Institute of Technology 4800 Oak Grove Dr. Pasadena, Ca 91109 <u>tpagano@jpl.nasa.gov</u> (818) 393-3917 April 27,2018

© 2018 California Institute of Technology. Government sponsorship acknowledged.

AIRS Designed for High Spectroradiometric Resolution, Accuracy and Stability

AIRS Features

- Orbit: 705 km, 1:30pm, Sun Synch
- Pupil Imaging IFOV: 1.1° x 0.6° (13.5 km x 7.4 km)
- Scanner Rotates about Optical Axis (Constant AOI on Mirror)
- Full Aperture OBC Blackbody, ε>0.998
- Full Aperture Space View
- Solid State Grating Spectrometer
- Temperature Controlled Spectrometer: 158K
- Actively Cooled FPAs: 60K
- No. Channels: 2378 IR, 4 Vis/NIR
- Mass: 177Kg,

Power: 256 Watts,

Life: 5 years (7 years goal)

SCAN MIRROR

SPACE CAL (4)

SPACE CAL (4)

SPACE CAL (4)

SPACE CAL (4)

PHOTOMETRIC SOURCE (TUNGSTEN LAMP)

SCAN SWATH

2

SCAN SWATH

3

SC

Isolated Scan Cavity

Temperature Controlled Instrument

Grating Spectrometer

IR Spectral Range: $3.74\text{-}4.61~\mu\text{m},~6.2\text{-}8.22~\mu\text{m},~8.8\text{-}15.4~\mu\text{m}$ IR Spectral Resolution: $\approx 1200~(\lambda/\Delta\lambda)$

No. IR Channels: 2378 IR

AIRS Spectral Bands Defined by 11 Entrance Apertures and 17 Detector/Filter Modules

AIRS Module Spectral Band Limits					
		λ1	λ2	v1	v2
		(µm)	(µm)	(cm ⁻¹)	(cm ⁻¹)
1	M1a	3.752	3.934	2541.9	2665.2
2	M1b	4.127	4.348	2299.8	2422.8
3	M2a	3.891	4.088	2446.2	2569.8
4	M2b	4.301	4.584	2181.5	2325.0
5	M3	6.930	7.473	1338.2	1443.1
6	M4a	6.196	6.489	1541.1	1613.9
7	M4b	6.549	6.848	1460.3	1527.0
8	M4c	7.469	7.786	1284.3	1338.9
9	M4d	7.858	8.217	1217.0	1272.6
10	M5	8.798	9.469	1056.1	1136.6
11	M6	9.558	10.269	973.8	1046.2
12	M7	10.264	10.974	911.2	974.3
13	M8	11.065	11.744	851.5	903.8
14	M9	11.731	12.670	789.3	852.4
15	M10	12.790	13.735	728.1	781.9
16	M11	13.728	14.543	687.6	728.4
17	M12	14.663	15.394	649.6	682.0

AIRS Radiometric Transfer Equations Used to Identify Error Terms

Radiometric Transfer Equations

$$\begin{split} N_{sc,i,j} &= \frac{a_o(\theta_j) + a_{1,i}(dn_{i,j} - dn_{sv,i}) + a_2(dn_{i,j} - dn_{sv,i})^2}{1 + p_r p_t \cos 2(\theta_j - \delta)} \\ a_o(\theta_j) &= P_{sm} p_r p_t [\cos 2(\theta_j - \delta) + \cos 2\delta] \\ a_{1,i} &= \frac{N_{OBC,i}(1 + p_r p_t \cos 2\delta) - a_o(\theta_{OBC}) - a_2(dn_{obc,i} - dn_{sv,i})^2}{(dn_{obc,i} - dn_{sv,i})} \end{split}$$

 $N_{sc,i,j}$ = Scene Radiance (mW/m²-sr-cm⁻¹) $Psm_{=}$ Planck radiation function $N_{OBC,i}$ = Radiance of the On-Board Calibrator Blackbody i = Scan Index, j = Footprint Index θ = Scan Angle. θ = 0 is nadir. dni,j = Raw Digital Number in the Earth View dnsv,i = Space view counts offset. ao = Radiometric offset. a1,i = Radiometric gain. a2 = Nonlinearity prpt = Polarization Factor Product d = Phase of the polarization

Radiometric Accuracy Equation

$${\partial\!N_{SC}}^2 = \!\!\left(\!\frac{\partial\!N_{SC}}{\partial\!p_r p_t} \Delta p_r p_t\right)^2 + \!\!\left(\!\frac{\partial\!N_{SC}}{\partial\!\delta} \Delta \delta\right)^2 + \!\!\left(\!\frac{\partial\!N_{SC}}{\partial\!T_{sm}} \Delta T_{sm}\right)^2 + \!\!\left(\!\frac{\partial\!N_{SC}}{\partial\theta} \Delta\theta\right)^2 + \!\!\left(\!\frac{\partial\!N_{SC}}{\partial\theta} \Delta\theta\right)^2 + \!\!\left(\!\frac{\partial\!N_{SC}}{\partial\theta} \Delta F_{OBC}\right)^2 + \!$$

- T. Pagano et al., "Pre-Launch and In-flight Radiometric Calibration of the Atmospheric Infrared Sounder (AIRS)," IEEE TGRS, Volume 41, No. 2, February 2003, p. 265
- T. Pagano, H. Aumann, K. Overoye, "Level 1B Products from the Atmospheric Infrared Sounder (AIRS) on the EOS Aqua Spacecraft", Proc. ITOVS, October 2003

Trends seen in AIRS Calibration in Cold Scenes (DCC's)

8/10/17

AIRS Trends 2

- The same data as the previous image but now shown as difference from a 2004 baseline.
- The stratospheric interannual differences are real
- A/B detector differences up to +/- 0.6 K are very obvious but are actually decreasing
- Shortwave trend is up to 5 K.
- There's also a trend up to 0.3 K~1100 cm⁻¹.

Evan Manning, October 2017 Science Team Meeting

High Uncertainty in Mirror Polarization Impacts 4µm Accuracy in Cold Scenes (200K)

Uncertainty is greatest at temperature extremes

4 Spaceviews Enable Calibration of Mirror Polarization. Roll provides Validation.

BT Ch 2333, 2616 cm⁻¹ **Space**

Earth View – Space View Radiance

 $(dn_x - dn_{s1})a_1 = -P_{sm}p_rp_t[cos2\delta cos2\theta_x + sin2\delta sin2\theta_x + cos2\delta]$ 8

Space Views Enable In-orbit Characterization of AIRS Mirror Polarization Trends

One Day Per Month

30d Average Day Per Month

Space views for all channels for entire mission averaged by day provided by Evan Manning

Module Center Channels p_rp_t and Phase vs time

Polarization and phase per month and linear fit

Polarization and Phase Derived from SV Data over Entire Mission

Linear fit gives annual trend. Time dependent polarization reduces errors.

Trend in polarization is up to 5% of nominal per year

Time dependent polarization fit (blue) reduces errors compared to static (red)

V5 vs v7j Polarization

V7j Polarization Factor Product and Phase

- Monthly averaged space views (Manning ADF 917)
- Fit to cal equation as a function of prpt and phase (Weiler ADF 741)
- Time dependent coefficients (t=0 shown below)
- 20 point smooth over individual modules
- · Uncertainty is rms dev of fit to linear trend

- Average prpt comparable v5 and V7
- More discrete module boundaries in V7

Phase = 0 in v5

Preflight Stepped Linearity Test Used to Derive OBC BB Emissivity and Nonlinearity

Effective Emissivity

Nonlinearity

V5 vs v7j Emissivity and Nonlinearity

V7j Emissivity

- Sorted by Wavelength
- Median smooth over 500 channels
- Averaged over all Tests

- Errors comparable V5 and V7
- Average emissivity closer to unity
- No module boundary discontinuities

V7j Nonlinearity

- Sorted by Module
- Median smooth 20 channels
- Averaged over all test
- A and B Separate

- Errors comparable V5 and V7
- Average emissivity closer to unity
- No module boundary discontinuities

Calculated V7j-V5 Bias and Uncertainties by Channel at 3 Scene Temperatures

- Significant differences at low scene temperature due to polarization changes
- Less than 200 mK errors for warmer scenes

Coefficients derived from space views applied to roll test produce low errors

Derived radiance in Earth Viewport of deep space (spacecraft roll maneuver) expressed in terms of temperature at 220K

Radiometric Uncertainty by Contributor at 200K Scene Temperature

V7j uncertainties for prpt and nonlinearity much smaller at cold scene temperatures

Radiometric Uncertainty vs Temperature by Module for Uniform Scenes

V7j uncertainty smaller and less scene dependent

v5

Example of Potential Calibration Error in Non-Uniform Scenes

- BT 2616 cm⁻¹ BT 1231 cm⁻¹ shows trend with time
- Trend shows increasing dependence on granule average temperature (Aumann)
- Spatial analysis of differences shows change in near field response
- Potential Causes: Mirror Scatter Degradation, Defocus
- PRELIMINARY

BT1231-BT2616 Viewing Cold Scenes < 225K vs Time & Granule Temperature while viewing DCCs (Aumann)

Regression Analysis

- Fit difference between L(2508)-P(T₁₂₃₁,v_n=2508cm⁻¹)
 - To sum of signals from near field
 - L1B Extracted Data from Evan Manning

AIRS Radiometric Uncertainty Status

- AIRS radiometric accuracy at low temperatures driven by knowledge of the mirror polarized emission (p_rp_t and delta)
- View of space during normal scanning operations enables in-flight derivation of polarized emission
- Terms applied to earth view during spacecraft roll show low residual errors
- Significant improvement over v6 errors
- Worst problem (biggest improvement) at short wavelengths and cold temperatures. Not enough to explain all errors observed with DCCs
- Next Steps:
 - Test: Examine sample and ACDS data sets compared to prior versions
 - Validate:
 - · Check trends on Deep Convective Clouds
 - Revisit validation of polar regions
 - Cross-compare
 - Compare with IASI and CrIS
 - Accuracy assumes uniform scenes. Next step to look at accuracy in non-uniform scenes.